Commentary
中国研究のカギは家計・企業の個別データにあり
「中国学へのミクロデータ活用法」の連載開始にあたって
中国への関心は、中国の政治的な日程や突発的な危機の発生によって高まるようです。例えば中国共産党の党大会や恒大集団の債務危機がそれにあたります。
一方で、中国の経済、社会、政治をどのようなデータに基づいて分析するか、どのように研究の基盤をつくって共有していくか、という点にはあまり光が当たらず、関心も高まりません。そこで本連載では、気鋭の中国研究者たちが自ら使っているデータセットについて、その入手方法から分析手法までをわかりやすく解説していきます。主な読者層として想定しているのは、狭くは中国経済の研究者、広くは中国をめぐる社会科学研究に関心を持つ学部生・院生・社会人です。
「中国研究に関するデータ」を取り巻く環境
世の中はビッグデータの時代といわれています。中国もその例外ではないどころか、むしろビッグデータの宝庫といってもよいくらいです。技術的にはより多くの種類の、そしてより大規模なデータが利用可能となっています。これまで活用されてこなかった情報にウェブをつうじてアクセスし、それをデータとして整理することもできます。しかし一方で、2010年代後半以降、中国における外国人による本格的調査が困難になりつつあります。一部データの越境移転に対する中国政府の規制も始まっており、データの利用可能性について楽観視はできません。
加えて意識せざるを得ないのは、日本における、とりわけ学生の中国への関心の低下です。パンデミックの影響もあり、大学生の交流など中国の「現場」が遠のいたことは、中国を含む諸外国への関心を低下させつつあるようです。また日中関係の悪化に伴い、中国への関心は2010年代初頭から一貫して低下傾向といわざるをえないでしょう。米中摩擦の激化も相まって、中国研究への心理的なハードルはさらに上がったかもしれません。
ただ、中国に関して解明すべき学術的論点は数多くありますし、また研究する手段も引き続きたくさんあります。われわれに何ができるのかを考えるうえでも、改めて、過去10年程度の学術研究に使われた価値あるミクロデータを紹介していくことは意義深いでしょう。
過去数十年のスパンで見ると、中国に関わるデータを取り巻く環境は大きく変化してきました。少しだけ歴史的に振り返れば、1980年代に改革開放が本格化する以前の研究者はデータの制約を強く受けてきました。
経済に着目して1つの例を挙げれば、嶋倉・中兼編(1980)は中国農村部で成立した社会主義の末端の仕組みである人民公社制度を明らかにするために、黒龍江省からの帰国孤児にインタビューして書かれたものでした。改革開放が本格化して以降は、『中国統計年鑑』を代表とする各種統計年鑑に掲載された公式統計が入手可能になりました。これらの数値は年ごと、地域ごと、産業ごとに集計されたデータですが、中国経済をマクロかつ分野ごとに検討するうえで基礎的な資料となりました(加藤, 1997; 中兼, 1998)。
公式の統計指標の利用には吟味が必要ですが、それでも現在においても間違いなく最も重要な情報源となっています。公式統計に加えて、1980年代以降は、農村部や企業を中心に、現地訪問による量的・質的調査が数多く蓄積されてきました。
1990年代以降、蓄積されてきた個人・家計・企業のミクロデータ
そして1990年代以降、ミクロデータが数多く蓄積されるようになりました。ここでいうミクロデータとは、個人、家計、企業といった個別の経済主体や、個別取引や個別新聞記事といった経済活動に関わる細かな単位のデータです。
その代表は「Chinese Household Income Project (CHIP)」などの社会調査データで、これに加えて一部の企業データも利用可能となってきました。2000年代以降、こうしたデータを利用した所得格差や生産性に関する研究成果は国際学術誌のみならず、書籍として多数発表されており、中国経済研究の基盤の1つを成しているといえるでしょう(徐, 2014; Ma, 2018; 厳, 2021; 唐, 2021)。
下の図1は、英語学術論文の要旨情報を用いて、中国経済に関する経済学の論文がどのようなデータと手法を用いているかをカウントし、論文全体に占める比率を示したものです。ミクロデータに関する研究は過去20年にわたって継続的に増えています。検索したキーワードは、本文末尾の注に記載したとおり、要旨情報にデータ名やデータレベルまで記載しない場合もあるため、実際にはさらに多くの論文がミクロデータを利用していると思われます。そして手法面では、近年、社会科学全般で因果関係を解明する研究、いわゆる因果推論が重視されており、それは中国経済研究においても例外ではありません。こうした因果推論の際にもミクロデータは力を発揮します。
中国関連の各種データ情報を整理しているサイトもあります。カリフォルニア大学サンディエゴ校のChina Data Labには合計103件の公式統計やミクロデータが掲載されています(https://chinadatalab.ucsd.edu/resources/)。またノースウェスタン大学ケロッグ経営大学院のChina Data Access Projectは94件のマイクロデータをリスト化しています(https://www.kellogg.northwestern.edu/research/global-poverty-research-lab/research/projects/china-data-access.aspx)。日本語では唐(2021)の巻末付録に8件のミクロデータが紹介されています。
これらのリストや記載も大変有用です。しかし当該データを使った研究の最近の具体例や、その分析の際の悩みまで知ることはできません。実際にそのデータを使っている研究者に会って話を聞く……というのが一番でしょうが、なかなかそうもいきません。
中国学.comにそうした情報があれば、きっと有用でしょう。
社会調査・企業関係・オルタナティブの3つのミクロデータ
本連載では、①社会調査データ、②企業関係データ、③オルタナティブデータという3つのカテゴリーに分けて、ミクロデータを取り上げていきます。
社会調査データについては、Chinese Household Income Project (CHIP)、Chinese General Social Survey (CGSS)などを取り上げます。いずれも豊富なサンプルサイズと変数を有するもので、中国経済について、おそらく最も多くの学術論文を生み出しているカテゴリーといっても過言ではないでしょう。とくに個人や家計の行動を分析するうえでは社会調査データは最有力のデータであり、所得格差に関する基礎的指標はこうしたミクロデータが利用されます。また現代中国を考えるうえで避けて通れない戸籍制度やそれに基づく社会保障の差や、個人の属性や経験が所得に与える影響を明らかにする目的で、この種のデータは重要な資料となっています。
企業関係データでは、規模以上鉱工業個票データや中国株式市場創業板データなどを取り上げます。企業データには豊富な財務情報が含まれており、さらに中国経済を理解するうえで欠かせない所有制の変数も含まれています。企業レベルの生産性の推計や、所有制ごとの比較、そして新規参入企業と退出企業の整理は、中国経済のダイナミズムを詳細に理解するうえで欠かせません。中国経済の活力を理解する目的で、企業データは不可欠なデータの1つといえるでしょう。
オルタナティブデータとしては、地方政府が発行する債権をはじめとする取引レベルデータや、新聞情報を取り上げます。近年の経済学の実証分析では、従来型のデータに加えて、さらに多頻度で定型化されていないデータを使った分析も増えています。このカテゴリーは多種多様で、その所在もそれぞれです。ウェブ上の情報を収集することもあれば、一種のデータベースを利用することもありますし、また人工衛星が撮影した夜光データを利用することもあります。こうした情報をデータとして扱うことで、公式統計や既存のミクロデータでは難しかったような論点について、新鮮な分析が可能になるかもしれません。
もちろん、これらのデータを公式統計と結合させることもできます。実際、多くの研究は公式統計を含む複数のデータを組み合わせることによって研究の独自性を獲得しています。また、経済学や関連する社会科学の理論はその分析の際の土台となります。そしてこれらに中国に関する歴史的・制度的理解と現場感覚をうまくマッチングさせたとき、エキサイティングな研究が導き出されるでしょう。その過程で、質的な調査が重要な役割を果たすことも期待されます。 本連載が中国経済に興味を持つ方々にとって有益な情報となれば幸いです。
図1に関する注:
Web of Scienceを用いて、2000年1月1日から2022年12月31日までの、中国に関する社会科学分野の論文を抽出し、その論文カテゴリーに経済学(Economics)が含まれる4万219本を抽出した。そして下記のミクロデータ、因果推論に関するキーワードを含む論文をカウントした。因果推論のキーワードの選定の際にはCurrie, Kleven, and Zwiers (2020)を参考にした。キーワードのうちデータ頭文字であるCHIPとCHARLSは、別の語彙に該当する可能性があるため採用しなかった。なお、本分析データは、中国学イニシアティブの機械学習部会にて整理したものである。
ミクロデータ: CFPS, China Family Panel Studies, CGSS, Chinese General Social Survey, Chinese Household Income Project, CHFS, China Household Finance Survey, China Health and Retirement Longitudinal Study, micro data, micro-data, firm-level, firm level, household-level, household level, individual-level, individual level.
因果推論:causality, causal inference, treatment effect, difference-in-difference, difference in difference, event study, event studies, propensity score, propensity-score, synthetic control, Randomized Controlled Trial, Randomized Control Trial, RCT.
参考文献
加藤弘之(1997)『中国の経済発展と市場化――改革・開放時代の検証』名古屋大学出版会。
厳善平(2021)『ミクロデータからみる現代中国の社会と経済』勁草書房。
嶋倉民生・中兼和津次編(1980)『人民公社制度の研究』アジア経済研究所。
徐涛(2014)『中国の資本主義をどうみるのか―― 国有・私有・外資企業の実証分析』日本経済評論社。
唐成(2021)『家計・企業の金融行動から見た中国経済「高貯蓄率」と「過剰債務」のメカニズムの解明』有斐閣。
中兼和津次(1998)『中国経済発展論』有斐閣。
Currie, J., Kleven, H., & Zwiers, E. (2020). Technology and big data are changing economics: Mining text to track methods. In AEA Papers and Proceedings, Vol. 110, pp. 42-48.
Ma, X. (2018). Economic transition and labor market reform in China. Springer.